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Abstract 

PERFORMANCE COMPARISON OF SELF-CONSUMPTION FOR A PHOTOVOLTAIC 
SYSTEM WITH BATTERY STORAGE AND LOAD MANAGEMENT 

 
Pedro Rabelo Melo Franco 

B.S., Centro Federal de Educação Tecnológica de Minas Gerais 
M.S., Appalachian State University 

 
Chairperson: Brian W. Raichle 

 

 
 As the energy consumption in the U.S. continuous to rise, there is a need to install 

more power plants to supply the energy demand. However, installing more fossil fuel power 

plants is very harmful to the environment. The rapid growth in photovoltaic (PV) system 

does contribute in reducing the amount of new power plants, but since its performance relies 

on weather conditions, this system may not be very reliable on its own. The non-dispatchable 

nature of PV limits the amount of PV on the current grid. In order to improve this system’s 

reliability, it is possible to add energy storage and charge it during off peak demand or when 

there is excess in energy PV generation. Therefore, whenever there is a peak demand, PV 

power can be combined with battery power to supply the demand. In addition, load 

management is another technique that can potentially allow PV to satisfy more loads 

 In this study, performance of a residential PV system with and without storage was 

studied in order to compare the improvements in self-consumption, meaning a decrease in 

grid imports/exports. Two different load management schemes were compared. 
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CHAPTER 1: INTRODUCTION 
 
 

Introduction 

 With a decrease in the cost investment required, along with federal and state tax 

incentives (where applicable), photovoltaic (PV) systems have been more economically 

attractive in the past few years. For example, in 2013, the Hawaiian utility companies 

Hawaiian Electric, Maui Electric, and Hawai’i Electric Light, had a total of 17,609 solar 

installations with more than 129 MW of capacity. This represents a 39% increase in PV 

installations in that state compared to 2012. The total number of PV systems installed in 

Hawaii by December 31, 2013 was 40,159, with a total capacity of 300 MW, with 96% of 

those systems taking advantage of net metering, whereby a PV system is connected to and 

exports excess electricity to the grid (Rosegg, 2014). Table 1 shows the numbers of 

installations and capacity.  

 
Table 1. Solar Installations and Capacity by Utility as of December 31, 2013 (Rosegg, 2014) 

 

 However, this rapid growth resulted in some neighborhood circuits reaching 

extremely high levels of PV generation. As a result, these distribution circuits sometimes 

exceeded 100% of the daytime minimum load, meaning that generation would need to be 
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curtailed and lose revenue. Hence, interconnection studies and possible implementation of 

safety measures or upgrades has to be done before installing more PV systems (Rosegg, 

2014). In addition to approvals for each installation, Hawaiian Electric company, Inc. 

(HECO) started charging $500 for solar permits (Francescato, 2014). 

 Although Hawaii, with very high electric rates, currently represents an extreme case, 

this situation could be repeated in other states across the United States, meaning that further 

research should be done to address the issues posed by increased numbers of grid-connected 

PV systems.  

 Another relevant issue regards the relationship between energy generation and load 

demand. The demand for electricity has a time varying nature that is influenced by residential 

and business behavior as well as weather conditions. Traditional generation is dispatchable, 

meaning that power plants can be turned on and off to meet demand. Figure 1 illustrates a 

typical daily load curve. The shape of the load profile determines the schedule for the 

operation of power plants. The lower part of the demand is supplied by power plants with 

low variable operating costs (costs that vary with changes in output), such as coal and nuclear 

power plants. Those types of energy generation, called base load, have high investment costs 

and lower fuel costs. Because it takes many hours to turn these plants on or off, they run 

throughout the entire year (Kaplan, 2008). 

 The intermediate part of the graph is supplied by “load-following” units. These units 

are able to more quickly respond to the load variation by changing their outputs. Combined 

cycle units can be used for this purpose. These units, called intermediate load plants, usually 

are efficient but use expensive natural gas or fuel oil as fuel (Kaplan, 2008). 
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 The high peaks in the load profile are supplied with peaking units. These units have a 

fast startup and shutdown time to meet those brief peaks. However, they usually have the 

most expensive operating cost and only run for few hundreds of hours a year (Kaplan, 2008). 

 

Figure 1. Example of a daily load profile (Kaplan, 2008, p. 3). 

 As mentioned before, the peak demand only happens during a small period of time in 

a year, meaning that very expensive power plants designed to supply those peaks will be 

running sporadically throughout a year. In order to better understand the situation, it is 

possible to obtain real data in the PJM Interconnection’s website.    

 The company “PJM Interconnections” is a regional transmission organization (RTO) 

that coordinates the movement of wholesale electricity in all or parts of Delaware, Illinois, 

Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, 

Tennessee, Virginia, West Virginia and District of Columbia” (PJM, 1999-2016). This 

company provides a large amount of information related to energy generation of a year for 

the area previously cited. Figure 2 is a graph plotted with the power demand in Gigawatts 
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(GW) for the year 2013. In order to better visualize the magnitude of the peaks throughout 

the year, the graph was plotted starting from the highest hourly power to the lowest one. The 

graph does not show information about the time of peak demand, but highlights the 

magnitude and occurrence of peaks. 

 The data for the chart in Figure 2 shows that for the 35 first hours there was a 

difference of 10 Gigawatts (GW) between the highest power demand to the lowest power 

demand (within those 35 hours). A typical power rate for a coal power plant is 1 GW. Hence, 

in less than 2 days, the equivalent of 10 large power plants operating at full power would be 

needed to supply the demand. It is important to understand that these generating assets would 

only be on during 35 hours out of 8,760 hours in an entire year, representing a very 

inefficient and expensive business.   

 
Figure 2. PJM Energy Demand 2013 (PJM, 1999-2016). 

 Renewable energy systems such as PV are very important for today’s energy 

generation because it uses non-polluting resources. However, PV is affected by weather 

conditions, and it may not be very effective during those high peak demands presented on 
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Figure 2. In the first case, for example, the highest peak demand happens at 5 pm when there 

will not be as much PV generation as it could have around noon. Therefore, there would still 

be a need for building new dispatchable power plants to supply power during peak demand 

or during adverse weather conditions. For the second case, assuming a large amount of PV 

penetration in the country, a PV system usually has the highest power generation around 

noon, a time of a day which is off the peak demand for most seasons. Therefore, a high PV 

generation off the peak demand would require either the PV system or a baseload power 

plant to be turned off. Ideally, one would not want to turn the PV system off since it uses 

renewable resources and has a very low variable operating cost. However, not having reliable 

energy generation can lead to a brownout when the weather suddenly changes its condition 

and the baseload power plant does not have enough time to ramp up and supply the power 

demand.   

 A possible solution for two issues related to reliability of PV – variable rates of solar 

resource and non-coincidence of solar electrical production and electric utility peak loads - 

would be to add electrical storage, such as battery banks, to the electrical system. Batteries 

can instantaneously deliver power when needed and are reliable when properly used. In 

addition, lithium-ion batteries have been increasing their energy density and decreasing their 

costs over the years. Battery banks can either be used with or without PV. Without PV, the 

battery banks can be charged during off peak and discharged during peak demand. With PV, 

excess energy generated during periods of high solar electric production can charge the 

batteries and be used to supply the peak demand as needed.   

 Since 2009, self-consumption systems (where residents seek to meet a maximum 

amount of their electricity demand via their own PV arrays and on-site battery storage) have 
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become a trend in Europe (European Photovoltaic Industry Association, 2013). This type of 

system prioritizes energy consumption on site via direct PV use and battery storage over 

energy exports to the grid. Combining self-consumption with a load management system 

makes the results even greater. 

 This study will examine the performance of a self-consumption system with load 

management by analyzing the energy imported and exported to the grid. The data collection 

will be done in Boone, North Carolina. More details about the experiment will be further 

presented in this thesis. 

 

Statement of the Problem 

 The rapid growth of PV installations can result in some problems for the utility grid if 

the solar electric products exceeds the voltage or current limits of the distribution or 

transmission lines, power electronics equipment, etc. Although a grid-tied PV system exports 

only the excess power to the grid, depending on the amount of PV installed in a 

neighborhood, extra safety measures and grid upgrades will have to be implemented. A well-

designed self-consumption system can decrease considerably the impact on grid, providing 

benefits for both utility companies and for customers. Although this type of system has 

become common in Europe, it has not been used within the United States, and questions 

remain about its applicability in locations across the US. 
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Purpose of the Study 

 This research tests a self-consumption system combined with a load management 

system in the United States in order to verify its applicability and its effectiveness in this 

geographic location.  

 The goal of this project is to compare the performance of a self-consumption system 

located in Boone, North Carolina by using the methods of integrated storage and load 

management. Data shall be collected for a grid connected PV system with different setups 

regarding energy storage and load management. This will be carried out under experimental 

conditions at a solar research facility located on the campus of Appalachian State University. 

 

Research Questions  

 The research questions for this study are the following: 

• To what extent can a PV self-consumption system with battery storage installed in 

Boone, North Carolina reduce grid imports/exports compared to a PV system without 

storage? 

• How much would load management added to the same PV system with storage 

contribute to reduce grid imports/exports? 

• To what extent do the irradiance levels and profile affect the grid imports/exports? 

 

Limitations of the Study 

 There are three limitations for this study. The first one is regarding the time for data 

collection, the second is related to the lack of side-by-side systems and the third is regard to 

the hourly average loads.  



8 

 Due to some delays on acquiring the components for the research, the time frame for 

the data collection was shortened, changing all the plans for each system setup simulated. As 

there are no side-by-side systems, the comparisons will need to be done under similar, but 

not identical, meteorological conditions. As the data used to recreate the load profile had a 

timestamp of 1 hour, there was not a way to simulate any short term demands, which limits 

the capability of recreating more realistic loads.  

 

Significance of the Study 

 This study is intended to quantify the performance of a self-consumption system in 

the United States. This type of system has been in use in Europe since 2009 and it has 

achieved positive results from both the utility grid and from consumers (European 

Photovoltaic Industry Association, 2013). The goal is to help further research in self-

consumption systems here at Appalachian State University and provide the bases for a 

financial analysis for the customer side. The findings of this research are intended to help 

promote further consideration of self-consumption systems across the United States.     
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CHAPTER 2: REVIEW OF LITERATURE 
 

 PV system design varies by topologies, technologies, objectives and economics, as well 

as municipal and utility policy.  

 

Residential PV System Topologies 

Off Grid 

 Off-grid topology is a PV system that has no connection to the grid. It can be either a 

PV system that only powers some specific loads or a stand-alone system that would take a 

residence completely off grid. 

 If the residence is still connected to the grid but has an off-grid PV system, the system 

usually powers critical loads such as refrigerator and lights, and has a back-up battery bank in 

case the grid goes down. 

 A stand-alone system is more elaborated since the residence is completely off grid. 

The PV system is sized to exceed the daily loads and also has a battery bank the stores the 

excess energy generated to supply power during the night or when PV cannot supply the load 

by itself. In order to make sure that the residence will not have a lack of power, it is very 

common to combine a generator with the system.  

Grid Connected 

 Traditionally, the grid-connected PV system is simply a PV system that is connected 

to the grid through an inverter. Depending on the agreement done with the utility, the PV 

system can supply power to the loads and export the excess in exchange of credits or sell all 

the power to the grid as will be discussed in the next section.  
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 Currently, battery banks are being introduced to grid-connected PV systems for Time-

of-Use (TOU) and peak-shaving purposes. Basically, the batteries would be charged either 

with PV excess power or by the grid during off peak and discharged during the peak demand 

since for some regions there is a difference in energy rates during the peak demand. In 

addition, some utilities include a peak demand charge. By doing that, it also helps to cut the 

peaks off, meaning that the grid will not be supplying a considerable amount of energy 

during peak demand.     

Self-Consumption 

 A self-consumption system is a hybrid of both off-grid and grid-connected system 

that prioritizes self-consumption. In order to do that, PV first supplies the battery bank so it 

can supply the loads when needed. If PV generation is higher than the power used to charge 

the batteries, the excess is used to power the loads. Any other excess power is exported to the 

grid.    

The excess power exported is sold at a certain percentage of the retail price, 

according to the country and its regulations, instead of exchanging it for credits throughout 

the year. Self-consumption systems have been used in Europe since 2009, and the conditions 

vary for each country. For instance, in Germany, the remuneration has been higher for 

consumers who achieve a rate of self-consumption over 30% (EPIA, 2013). The schemes of 

self-consumption vary depending on the power capacity of the system, as can be seen in 

Figure 3. 
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Figure 3. Overview of main net-metering and self-consumption schemes in Europe (EPIA, 
2013, p. 4). 

 

Residential Interconnection Agreements 

Net Metering 

 Net Metering is a service that allows a customer to connect their renewable energy 

systems, such as PV and wind, to the power grid. A bidirectional meter is installed in order to 

measure the grid import and export so the customer will only pay for the “net” energy 

consumed. If there was more energy generated than consumed, the customer can qualify for 

credits, depending on the state or utility company. In effect, the customer is compensated for 

their energy at the retail rate. The idea behind the Net Metering is to provide the customer a 

reliable source of energy when the generators (PV panels or wind turbine for instance) are 

not producing enough energy. By doing that, the grid can be seen as a storage system for the 

customer. 
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Buy-All Sell-All 

 Buy-all sell-all systems allow the customer to connect their renewable energy system 

to the grid. However, it works differently than the net metering. The energy generated is not 

used at any moment to supply the owner’s load. All the energy generated is exported to grid 

and the owner receives a payment based on the energy generated at the agreed upon rate, 

typically the avoided cost. Some utilities and municipalities offer a premium for renewable 

generated electricity, such as for North Carolina’s NC GreenPower program and feed-in 

tariffs, which have been common in Europe. The customer purchases at the retail rate all of 

their consumed electricity.   

 

Self-Consumption Systems 

Since the focus of this project is a self-consumption system, it is important to 

understand all the aspects and components of this type of system as well as discussing other 

similar systems  

Battery Technologies 

There are different ways to store electricity by converting it into another form such as 

kinetic or potential energy. The most common way to store energy in a small-scale renewable 

energy system is through chemical potential energy. Within this category, there are several 

types of battery chemistries available in the market, including lead-acid, nickel cadmium 

(NiCd), nickel metal hydride (NiMH), and several types of lithium ion (Li-ion) chemistry 

(Nair, 2011). 

The oldest technology available in this market is the lead-acid batteries, which 

represented about 79% of the battery market in 2008. The ideal lead-acid battery for a small-
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scale renewable energy system is known as a deep-cycle battery. These batteries can be 

discharged multiple times by as much as 80% of their capacity without damaging their 

chemical properties. They offer low investment cost, lowest self-discharge rate among all 

rechargeable batteries, and are relatively easy to maintain. In general, they represent a cost-

competitive solution in the energy storage industry. However, they have diminished 

performance under low and high ambient temperatures, and they are not environmentally 

friendly (Nair, 2011; Baker, 2008). 

NiCd batteries are proven to be an alternative solution for a battery bank system. 

They are robust, and, compared to a lead-acid battery, have a longer life cycle, higher energy 

density, and lower maintenance requirements. They offer many advantages in PV 

applications, such as reliability, long life, and cycling ability. However, they are large, 

contain toxic heavy metals, and present a severe self-discharge process (Nair, 2011; Baker, 

2008). 

Based on their higher energy density compared to the NiCd batteries (25-30%) and 

the lack of toxic substances such as heavy metals (lead or mercury), NiMH batteries are a 

feasible alternative solution for energy storage. Although they are superior to lead-acid and 

NiCd in terms of specific energy, they are largely inferior to Li-ion batteries (Ruetschi, 

1995). One of the drawbacks for NiMH technology is that they suffer from severe self-

discharge, meaning that they are inefficient for long-term energy storage (Nair, 2010).     

Li-ion batteries are commonly used in portable electronics but their usage in electric 

vehicles and renewable energy systems is becoming more common. Compared to the other 

three battery technologies, Li-ion batteries have a higher energy density and they can achieve 

a storage efficiency close to 100%. The only drawbacks for this technology are the high 
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investment cost and the complicated charge management for the system. However, based on 

the wide range of applications, much of the research and development work has been done to 

reduce the capital cost for this technology (Nair, 2011; Baker, 2008). 

Due to the high energy density level combined with the decrease in cost the Li-ion 

batteries are the number one choice to develop a self-consumption system.     

Grid Services Provided by Battery Banks 

 The Rocky Mountain Institute (RMI) developed a report about “The economics of the 

battery energy storage”. The report evaluates the services that a battery storage unit can 

provide to ISOs/RTOs, utilities and customers, and estimates the value that they can provide. 

Figure 4 presents all those services and the stakeholders that each one can benefit. Tables 

A.1, A.2, and A.3 in appendix A describe all 13 services. 
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Figure 4. Batteries can provide up to 13 services to the stakeholders (Rocky Mountain 
Institute, 2015, p. 6). 
 

Depending on which service that battery is primarily intended to provide, multiple 

stacked usage can be realized to create the most value for the system. For example, according 

to the RMI report, demand charge reduction represents a 5-50% utilization rate, leaving an 

open space for applying a different application for the battery bank. By integrating a PV 

system with a battery bank, the self-consumption feature will increase, since the excess 

power can be used to charge the batteries, creating less dependency on the grid. 
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 Although the RMI report cannot fully answer the question of where should the battery 

storage be deployed to maximize the net value on the system, the study showed that “behind-

the-meter energy-storage business models that deliver a stack of services to both customers 

and other electricity system stakeholders can already provide positive net value to the 

electricity system under prevailing energy storage cost structures” (Rocky Mountain 

Institute, 2015, p. 40). This statement justifies an investment in research of battery storage in 

a residential system.   

Battery Manufacturers  

 There are some companies in the U.S. that develop Li-ion battery banks to provide 

the services previously discussed. Although it is not the focus of this research, it is important 

to know that there are companies that manufactures battery banks in utility scale, one of the 

solutions that could alleviate the need to install new massive power plants that run for few 

hours of a year to supply the peak demand. 

 Alevo is a Swiss-based group founded in 2009 that manufactures 2 MW/1 MWh 

utility scale battery banks. The product GridBank was designed to reduce the greenhouse gas 

emissions, increase the integration with the renewable energy systems and provide a range of 

services such as frequency regulation, transmission and distribution deferral, voltage support, 

etc, in order to improve the efficiency of the electric grid. According to Alevo, the GridBank 

can be used to smooth out peaks by storing excess generation during low demand times and 

discharging it during peak demands (Alevo Group S.A., 2016). Figure 5 is an illustrative 

picture of the GridBank. 
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Figure 5.  Alevo container sized GridBank (Alevo Group S.A., 2016). 

 Tesla has been making great advances on the Li-ion technology in the past few years 

and recently they developed the product called Tesla Powerwall. The Powerwall is a 3.3 kW/ 

6.4 kWh Li-ion battery bank that was developed to work as a power back-up system 

combined with a PV system. The Powerwall can be stacked up to 9 total and each bank has 

its own battery protection system (BPS) and charge controller. Figure 6 shows a 

representation of the Tesla Powerwall. 
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Figure 6. Tesla Powerwall (Tesla Motors, 2016). 

 Another residential/small commercial scale company in this market is the Adara 

Power. They offer the juiceBox Energy, a 5.5 kW/ 8.6 kWh Li-ion battery bank. As all Li-ion 

batteries, it has its own BPS in order to protect the bank (Adara Power, 2016). The 

interesting feature of the Juicebox Energy is that it communicates with the company and the 

Schneider inverter XW+. The company takes over the inverter in order to provide constant 

assistance to the customer, offering a safe environment and higher efficiency. This product 

was designed to deliver peak-shifting, back-up power, energy efficiency and time-of-use bill 

management. Due to the easy access to this technology, I will be using this battery bank to 

develop this research. Figure 7 displays the JuiceBox Energy. 
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Figure 7. The JuiceBox energy (Adara Power, 2016). 

Self-Consumption Inverter 

 One of the most important components of a self-consumption system is the inverter 

Companies such as SMA and Schneider both develop this technology. However, I will only 

focus on the Schneider inverter since this is the one used in this research. 

 Schneider offers two different products with almost the same capabilities, but one 

exports power to the grid (Conext XW+) and the other does not (Conext SW). The main 
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feature of this inverter is PriorityPower, which makes the inverter prioritizes self-

consumption rather than exporting/importing to/from the grid. With the ParallelPower 

feature, the inverter can be programmed to offset utility peaks, meaning that it can schedule 

the use of the battery bank when the price for electricity is high (during peak demand). The 

inverter also provides a reliable backup system when combined with a battery bank. 

 As mentioned before, the Schneider inverter works great with the JuiceBox energy, 

making it the perfect solution for this research. 

Load Management 

Another way to improve self-consumption within a system is through load 

management. In order to develop an efficient load management system, it is important to 

understand some concepts regarding demand response and how to analyze the residential 

load profile.  

According to the National Action Plan on Demand Response, demand response can 

be defined by “the ability of customers to respond to either a reliability trigger or a price 

trigger from their utility system operator, load-serving entity, regional transmission 

organization/independent system operator (RTO/ISO), or other demand response provider by 

lowering their power consumption” (The Federal Energy Regulatory Commission Staff, 

2010, p. 3).  

The terms deferrable and non-deferrable can be applied to describe the temporal 

nature of loads. 

A deferrable demand is one that can be shifted in time according to planned changes 

previously authorized by the customer. In other words, it means that loads such as air 

conditioning and water heating can be deferred along the day (Castillo, 2011), intentionally 

avoiding the peak demand.  
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A non-deferrable demand is one that cannot be shifted in time. For instance, lights, 

TVs, and refrigerators are loads that represent instantaneous or continuous consumption 

(Castillo, 2011), meaning that a change on use cannot be rescheduled. 

When analyzing a residential load profile, it is important to not only graph the total 

load used throughout the day but also to point out which specific loads have been used in a 

certain time interval. By doing that, it is possible to categorize the deferrable and non-

deferrable loads in order to facilitate the load management process.  

According to Guido Benetti, there are three techniques that can be used to increase 

the efficiency of a load system. The techniques are: Demand-side management (DSM), 

demand response (DR) and electric load management (ELM) (Benetti, 2015).  

DSM refers to methods or activities on the demand side that will change the utility’s 

load profile. This can include, for example, exchanging the lighting system from 

incandescent bulbs to LEDs or installing an up-to-date dynamic load management system 

(Benetti, 2015).  

DR is based on techniques that will induce the customer to reduce their power 

consumption and it can vary from incentive-based to time-based. Incentive-based is when the 

utilities or operators get access to manage a customer’s load. Time-based evaluates schedules 

of energy pricing in different programs: Time-of-use rates, critical peak pricing and real-time 

pricing (RTP). TOU rates refers to a static price schedule. Critical peak pricing bases on a 

less predetermined variant of TOU. RTP is a highly dynamic pricing scheme whereby 

wholesale market prices are forwarded directly to end customers (Benetti, 2015). 

ELM is a more general technique that refers to any policy devised to manage a set of 

loads to achieve a goal, such as energy usage optimization or peak shaving (Benetti, 2015).     
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The load management in this research will be basically a ELM. However, since the 

loads that will be used are created to simulate a load profile, the microcontroller will only 

shift the deferrable load that will be defined later in this research to either shave a peak 

and/or take advantages of the excess solar energy available.  

 

Previous Research 

 Previous research has shown some experiments with self-consumption systems, such 

as studies done by M. Castillos-Cagigal (2011) and Joern Hoppmann (2014), but using 

different approaches. 

 In the first study, a self-consumption system was developed in a prototype self-

sufficient house called the “Magic Box.” This system contained a battery bank system and 

“Active Demand-Side Management” (ADSM) to control the deferrable loads. The study 

presented promising results, such as a self-consumption rate of 77%. Although the author 

presented a list of loads and their energy consumption, he did not provide any information 

regarding which loads were shifted nor which technology was used to do the load 

management. Furthermore, the data presented corresponded to either a day or a week for 

each scenario, and no cloudy day was analyzed. Analyzing the performance of a self-

consumption system during a cloudy day is important in order to verify the efficiency of the 

system. Figure 3 below shows the system’s schematic. Note that the system is AC coupled. 

 The second research adopted the same topology as showed in Figure 3 but with no 

load management. The author simulated loads for a typical residential load profile in 

Germany, scaled to an annual consumption of 3,908 kWh for eight different scenarios based 

on different energy costs. The model created for this experiment simulated the PV power 

from 0.4 kWp to 14 kWp with steps of 0.4 kWp. The battery storage was sized from 0 kWh 
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(i.e., no storage) to 20 kWh, increasing in intervals of 0.5 kWh. The results presented show 

the optimal size for a self-consumption system based on the economic aspects modeled. 

According to the author, an optimal system has a PV capacity of 7 kWp for some scenarios 

and a storage capacity varying from 3 to 5 kWh depending on the scenario studied.   

 

Figure 8. Self-consumption topology (Castillo, 2011, p. 2340). 
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CHAPTER 3: METHODOLOGY 

 

 The PV self-consumption system was installed in the Solar Lab from Appalachian 

State University located at State Farm Road, Boone, North Carolina. The facility holds 

weather measurement devices and includes a PV system owned by the Renewable Energy 

Initiative (REI), a renewable energy fund sponsored by students at Appalachian State. Solar 

thermal research used to be performed at the same lab.  

 

Load Characterization 

Load Selection 

 As the research is taking place in Boone, North Carolina, the load profile used for the 

simulation came from Dr. Brian Raichle’s residence, also in Boone. He kept record of the 

energy usage of his residence from 2012 to 2014. However, the data collected for 2012 and 

2014 had some missing months. Therefore, the year 2013 was the only one analyzed to 

recreate a continuous load profile. The process to create a load profile followed 3 steps: 

1. The data was divided into the four seasons 

• Winter: January to March 

• Spring: April to June 

• Summer: July to September 

• Fall: October to December 
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2. As the data presented the power consumption for each hour in a day, the hourly 

average was taken for each season 

3. With one-hour timestamp hourly average data, it was possible to recreate a single 

load profile to represent each season  

 As the data collection was set during spring, the load profile obtained is represented 

by the graph in Figure 9. The total energy consumption is 23.61 kWh. 

 
Figure 9. Hourly average spring load profile. 

Building the Load Profile 

 
 Since the data collected did not distinguish which loads were being used for each 

hour of the day, the approach used to recreate the load profile was to define 6 loads with 

different power ratings that, when added up in a certain pattern, would match the hourly 

power consumption. Due to low costs, the loads were composed by incandescent light bulbs 
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and resistive space heaters, and the respective hourly average power ratings can be seen in 

Table 2.  

 
Table 2. Loads' Power Rating 

Load Composition Power (W) 
1 Space heater 400 
2 Space heater 760 
3 4x70W light bulbs 280 
4 3x70W light bulbs 210 
5 2x70W light bulbs 140 
6 4x60W and 1x55 light bulbs 295 
 

A sketch for the microcontroller Arduino was developed to create the pattern that 

simulates the load profile. The loads were connected to solid-state relays that would turn 

them on/off according to the time of day. The pattern created for the load profile with and 

without load management can be seen in Table 3. The simulated load profile presented an 

increase of only 0.345 kWh over the model load profile, which represents approximately 

1.5% of the total energy. The Arduino sketch can be found in appendix B.   

Loads 1, 3, 4, 5 and 6 were used to simulate the base load throughout the day while 

load 7 was mainly used to achieve the peaks of power as it can be seen on Figure 9. Load 7 

was also chosen to represent the deferrable load for the load management. A good example 

of a deferrable load is an electric water heater. A good insulated water tank has minor heat 

losses, allowing small variations in temperature throughout the day. Therefore, a portion of 

the water heating process can be shifted along a day. For instance, according to the heat 

transfer equation, a 50-gallon water tank would need 7.91 kWh to increase the water 

temperature from 55 °F to 120 °F. The calculation can be seen on the equation below, 

 𝑄𝑄 = 𝑚𝑚𝑚𝑚∆𝑇𝑇 ( 1 ) 
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where Q is the heat transfer in BTU, c is the water specific heat (1 BTU/lb/F), ΔT is the 

difference in temperature (65 °F) and m is the mass, defined by, 

 𝑚𝑚 =  𝜌𝜌𝜌𝜌 ( 2 ) 

where ρ is the water density (8.3 lb/gallon) and v is the volume (50 gallons). Therefore, 

 
𝑄𝑄 = 50 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∗ 8.3

𝑔𝑔𝑙𝑙
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

1
𝐵𝐵𝑇𝑇𝐵𝐵
𝑔𝑔𝑙𝑙
𝐹𝐹

∗ 65𝐹𝐹 = 26975 𝐵𝐵𝑇𝑇𝐵𝐵 
( 3 ) 

 Converting for kWh, 

 26975
3412

 
𝐵𝐵𝑇𝑇𝐵𝐵
𝐵𝐵𝑇𝑇𝐵𝐵
𝑘𝑘𝑘𝑘ℎ

= 7.91 𝑘𝑘𝑘𝑘ℎ  
( 4 ) 

It can be seen in Table 3 that load 2 is turned on 10 hours/day, meaning that its total 

energy consumption per day is 7.6 kWh. Therefore, load 2 is representing the magnitude of 

an electric water heater for a 50-gallon tank since it consumes approximately 96% of the total 

energy previously calculated. Two loads management schemes were created that shift a 

fraction of this energy. 

For this research, the 3-hours load management was developed by shifting load 2 

during the 3 hours starting at 9-11 PM to the 3 hours starting at 9-11 AM, so the power 

generated by the PV can be used to power this load instead of power from the grid. Around 

1/3 of the load 2 draw was shifted in time. The 5-hours load management shifted power 

drawn during the 3 hours from the previous profile plus shifted power drawn during the 2 

hours starting at 6 and 7 PM to 12 and 1 PM. Around ½ of the load 2 draw was shifted in 

time. 

Although the light bulbs and space heaters might vary the power output along the 

time that they are on, the hourly average power was very close to the expected as it can be 
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seen in Figures 10 to 12. The total daily energy measured for every data collected was off by 

less than 1.5% of the total expected energy.  

 
Table 3. Load Profile Pattern with the Respective Expected hourly Power Consumption and 
Daily Energy Consumption  

Hour 
Load profile 
without load 
management 

Power 
(kW) 

Load profile 
with 3h load 
management 

Power 
(kW) 

Load profile with 5h 
load management 

Power 
(kW) 

0 Load 2+4+5 1.110 Load 2+4+5 1.110 Load 2+4+5 1.110 
1 Load 2+5 0.900 Load 2+5 0.900 Load 2+5 0.900 
2 Load 3+4+6 0.785 Load 3+4+6 0.785 Load 3+4+6 0.785 
3 Load 2 0.760 Load 2 0.760 Load 2 0.760 
4 Load 1+4+5 0.750 Load 1+4+5 0.750 Load 1+4+5 0.750 
5 Load 1+4+5 0.750 Load 1+4+5 0.750 Load 1+4+5 0.750 
6 Load 2 0.760 Load 2 0.760 Load 2 0.760 
7 Load 2+4+6 1.265 Load 2+4+6 1.265 Load 2+4+6 1.265 
8 Load 1+3+4+6 1.185 Load 1+3+4+6 1.185 Load 1+3+4+6 1.185 
9 Load 1+4+5 0.750 Load 1+2+4+5 1.510 Load 1+2+4+5 1.510 

10 Load 3+5+6 0.715 Load 2+3+5+6 1.475 Load 2+3+5+6 1.475 
11 Load 1+3+5 0.820 Load 1+2+3+5 1.580 Load 1+2+3+5 1.580 
12 Load 3+4+5+6 0.925 Load 3+4+5+6 0.925 Load 2+3+4+5+6 1.685 
13 Load 1+3+6 0.975 Load 1+3+6 0.975 Load 1+2+3+6 1.735 
14 Load 3+4+5+6 0.925 Load 3+4+5+6 0.925 Load 3+4+5+6 0.925 
15 Load 3+4+5+6 0.925 Load 3+4+5+6 0.925 Load 3+4+5+6 0.925 
16 Load 3+4+5+6 0.925 Load 3+4+5+6 0.925 Load 3+4+5+6 0.925 
17 Load 1+3+4+5 1.030 Load 1+3+4+5 1.030 Load 1+3+4+5 1.030 
18 Load 2+5+6 1.195 Load 2+5+6 1.195 Load 5+6 0.435 
19 Load 2+5+6 1.195 Load 2+5+6 1.195 Load 5+6 0.435 
20 Load 1+3+4+5 1.030 Load 1+3+4+5 1.030 Load 1+3+4+5 1.030 
21 Load 1+2+4 1.370 Load 1+4 0.610 Load 1+4 0.610 
22 Load 1+2+6 1.455 Load 1+6 0.695 Load 1+6 0.695 
23 Load 1+2+6 1.455 Load 1+6 0.695 Load 1+6 0.695 

 Total Daily 
Energy (kWh) 23.955 
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Figure 10. Comparison between calculated, expected and measured load profile with no load 
management. 

 
 

 
Figure 11. Comparison between expected and measured load profile with 3h load 
management. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ho
ur

ly
 L

oa
ds

 (k
W

)

Time (h)

Load Profile with no Load Management

Calulated Expected Measured

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ho
ur

ly
 L

oa
ds

 (k
W

)

Time (h)

Load Profile with 3h Load Management

Expected Measured



30 

 

 
Figure 12. Comparison between expected and measured load profile with 5h load 
management. 

 
System Overview 

 As mentioned before, the PV system is located at State Farm, Boone, North Carolina. 

The system’s major components are: SolarWorld PV modules, Midnite Solar charge 

controller, Adara Power lithium-ion battery and Schneider inverter.  

 There PV array is composed by 12 SOW280W280M4 modules arranged in 3 strings 

of 4 modules. Each module is rated at 280 W, with an open circuit voltage of 39.5 V, 

maximum power point voltage of 31.2 V, short circuit current of 9.71 A and maximum 

power point current of 9.07 under the Standard Test Conditions (STC). The total PV peak 

power is 3.36 kW. Figure 13 presents the PV array at the Solar Lab. 
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Figure 13. 3.36 kW PV array. 

 The charge controller used for this research was a Midnite Solar Classic 200. There 

were not many parameters to be configured for this charge controller. The most important 

parameters set for this charge controller were the battery type and the battery charging 

voltage. The charge controller prioritizes battery charge, meaning that the energy generated 

by the PV system will first charge the battery and then supply the loads. 

 As mentioned before, the battery bank is an 8.6 kWh lithium-ion system developed to 

work specifically with a Schneider inverter. The battery bank communicates with the inverter 

via XanBus, which also allows Adara Power to monitor the system to prevent any damage to 

the system. 
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The inverter is a Schneider Conext XW+ 5548. The inverter was developed to 

prioritize self-consumption over grid export. The inverter configuration can be seen in the 

Appendix C. However, it is important to mention a few things related to the inverter set up 

that defines most of its behavior.  The current system is not exporting power to the grid 

(GridSell off), meaning that there is no excess PV generation. The inverter’s Grid Support 

mode is enabled, which limits the power drawn from the grid for battery charge. If the battery 

state of charge (SOC) is close to 30%, the grid will be used to charge the battery as long as 

there is not enough PV power. Grid charging did not happen during data collection. Figure 

14 presents the system configuration.  

 
Figure 14. System schematic. 
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Figure 15. System installed at State Farm. 

 Figure 15 presents the system installed at State farm and the numbers represent the 

following devices. 

1. Schneider inverter 

2. Midnite Solar charge controller 

3. JuiceBox Battery / Adara Battery 

4. Solid state relays 

5. Loads (light bulbs) 

System’s Conditions 

The experiment was developed and analyzed in several different conditions in order 

to verify improvements on self-consumption. The system’s conditions are listed below.  

1. Loads without load management + grid 

2. Loads without load management + grid + PV (Net metering) 

3. Loads without load management + grid + PV + storage 
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4. Loads with load management (3h and 5h) + grid 

5. Loads with load management (3h and 5h) + grid + PV (Net metering) 

6. Loads with load management (3h and 5h) + grid + storage 

 
Data Collection 

This research has two different systems for data collection: one developed with a 

Campbell Scientific data logger and one developed by the company Adara Power. All data 

collected had the same setup including PV power and storage, except for the difference in the 

load profile.  

 The Campbell Scientific includes the following measurements: 

• Grid power 

• Loads power 

• Battery voltage 

• PV current (Charge Controller output) 

• Irradiance 

The power data acquisitions were made with CR Magnetics power transducers with a 

basic accuracy of 0.5% installed on grid line 1, grid line 2, load line 1 and load line 2. The 

battery voltage was measured with a CR Magnetics voltage transducer with a basic accuracy 

of 1.0% installed in the E-panel. The PV current was measured at first with a 50 A CR 

Magnetics current transducer and then with a 75 A current transducer, both with a basic 

accuracy of 1.0%, installed at the output of the charge controller. The reason that the 50 A 

transducer was replaced with a 75 A model was that a small amount of data collected was 

stored as NAN (not a number). The replacement of the transducer fixed that issue. All 

transducers used were from the company CR Magnetics. The irradiance was measured with a 
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LiCorr 200 horizontal mounted pyranometer. The measured daily irradiance was used to 

calculated the total amount of sun hours for each day, which defines how many hours of a 

day that particular area received 1000 W/m2 of irradiance.  All sensor outputs were sent to the 

Campbell Scientific data logger and the data was collected every 10 seconds with 1 minute 

averages recorded.  

The Adara power website includes the following measurements: 

• Battery SOC 

• Battery Voltage 

• Battery Current 

• Battery Temperature 

As this data acquisition was made by Adara Power, the data was provided through the 

company’s website with a timestamp of a minute. The data can also be visualized as a chart 

with different time different timestamps. 

Figure 16 presents a representative chart with 10-minute timestamp data of May 24th 

with total grid, total load, PV power and battery power measurements. Figure 17 presents a 

PV power vs Irradiance scatter chart for the same sample day.  
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Figure 16. Grid, load, PV and battery power for May 24th. 

 
Figure 17. PV power vs Irradiance - May 24th. 
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As it can be seen in Figure 17, there are some data points with a high irradiance level 

and with a low PV power generated. It happens when the battery is almost at 100% SOC. 

When the battery is getting to that point, the charge controller changes the charging state 

from absorb to float. Therefore, the PV power will be curtailed in order to decrease the 

charge current maintaining the battery voltage at the same level. Also, as the charge 

controller and the inverter were not developed by the same company, they do not 

communicate with each other, which prevents the charge controller from knowing if any 

loads need to be supplied when the battery reaches 100% SOC.  

For this research, data was collected for an amount of 23 days from April to June 

under different experimental conditions as it can be seen in Table 4. 
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Table 4. Days of Data Collection 

Month Day Load Profile Current Transducer 

April 29 without load management 50 A 
30 without load management 50 A 

May 

19 with 3h load management 75 A 
20 with 3h load management 75 A 
24 with 3h load management 75 A 
25 with 3h load management 75 A 
26 with 3h load management 75 A 
27 with 3h load management 75 A 
28 without load management 75 A 
29 without load management 75 A 
30 without load management 75 A 
31 without load management 75 A 

June 

1 without load management 75 A 
2 without load management 75 A 
3 with 3h load management 75 A 
4 with 3h load management 75 A 
5 with 3h load management 75 A 
6 with 5h load management  75 A 
7 with 5h load management  75 A 
8 with 5h load management  75 A 
9 with 5h load management  75 A 

10 with 5h load management  75 A 
11 with 5h load management  75 A 
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CHAPTER 4: DATA ANALYSIS AND RESULTS 

  

Although a self-consumption PV system is typically defined as a residential topology, 

the term self-consumption can be used for all of the other PV system topologies. The 

difference between the topologies would be how the energy generating source and storage (if 

applicable) blend changes with each self-consumption factor. The self-consumption factor is 

defined by the amount of energy generated which is delivered to the loads divided by the 

total amount of energy consumed by the loads. Therefore, applying appropriate energy 

storage and load management to a PV system would affect the self-consumption factor, 

possibly reducing the amount of grid imports/exports. 

This chapter will be analyzing the changes in the self-consumption factor for a grid 

tied net metering system and a self-consumption system with and without load management, 

based on irradiance levels.  

 

Data Validation 

 Before analyzing the data regarding the self-consumption factor, it is important to 

validate the data measured. The data validation can be done based on a power flow equation 

derived from the conservation of energy. For this particular system, the power flow is defined 

by the load power (PLoad) minus the grid power (PGrid), minus the PV power generated (PPV) 

minus the battery power (Pbatt) multiplied by the inverting efficiency (ε = 95.7%) is equal to 

0, as it can be seen on equation 5. Pbatt is positive if battery is being charged or negative if 

battery is being discharged.     

 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙 −  (𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑃𝑃𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏) ∗ 𝜀𝜀 = 0  ( 5 ) 
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 Another way to analyze the energy balance is to calculate power from the grid based 

on load, PV and battery power and compare it to the grid measurement. Equation 6 shows 

how to calculate the expected grid power.  

 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙 =  𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −  (𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑃𝑃𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏) ∗ 𝜀𝜀 ( 6 ) 

 In order to visualize the comparison between measured grid power and calculated 

grid power based on the rest of the measured data, Figure 18 shows the data collected on 

May 25th that had a load profile with load management and a total sun hours of 5.28 h.  

 
Figure 18. Comparison between measured grid and calculated grid on May 25th.  

 The total grid energy (EGrid) measured for May 25th was 11.57 kWh while the 

calculated grid energy was 11.13 kWh, representing an error of 3.8%. Agreement between 

measured and calculated power is very good before 5 AM and after 9 PM, suggesting that the 

disagreement is due to measured PV power. Figure 19 shows a histogram for the power flow 

difference measured grid – calculated grid for May 25th. As it can be seen, the higher amount 
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of occurrences happens in range between -50 W and zero, with a peak difference of around 

10 W, validating the data collected and suggesting that the calculated grid power is 

undervalued.  

 
Figure 19. Energy balance histogram for May 25th. 

 Another sample day used for data validation was May 28th that had a load profile 
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Figure 20. Comparison between measured grid and calculated grid on May 28th. 

 
Figure 21. Energy balance histogram for May 25th. 
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Data Analysis 

 
Grid Tied Net Metering System 

 The data collected includes energy storage, and as mention before, when the battery 

SOC gets above 80% the charge controller begins to curtail PV power. Therefore, in order to 

analyze self-consumption for a net metering system it is necessary to calculate PV power 

based on the measured irradiance. April 30th was used as a sample day to analyze the relation 

between irradiance and the battery SOC. The irradiance was analyzed during the period that 

the battery bank was being charged by the array and had a SOC less than 80%. Figure 22 

shows power vs irradiance with a trend line defining the linear equation for the calculated PV 

power. 

 
Figure 22. PV Power vs Irradiance - April 30th.  
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Based on the trend line, the calculated PV power is:  

 𝑃𝑃𝑃𝑃𝑃𝑃,𝐶𝐶𝑙𝑙𝑙𝑙𝐶𝐶 =  3.0202 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑔𝑔𝐼𝐼 + 16.508  ( 7 ) 

where PPV,Calc is the PV power calculated and Irrad is the irradiance. 

Using the calculated PV power and not including the battery energy into the equation, 

it is possible to evaluate self-consumption of the system as a grid tied net metering system. 

As mentioned before, the self-consumption factor is defined by the amount of energy 

generated that was sent to the loads divided by the total energy consumed by the loads. For a 

PV system without storage, the energy provided to the loads comes solely from PV (EPV,Load). 

Although the energy provided by the grid does not fully affect the self-consumption factor, it 

is important to understand its behavior. For that, the 2 following sets of equations will 

calculate the power sent to the loads from grid (equation 8) and PV (equation 9). The text 

after // are comments explaining each equation. 

// net metering; calculate power sent to loads from the grid               ( 8 ) 
𝐼𝐼𝐼𝐼 �(𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀) < 0�  // PV fully satisfies loads; no grid needed 

 𝑃𝑃𝐺𝐺𝑔𝑔𝑔𝑔𝑙𝑙,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 = 0 
𝐼𝐼𝐼𝐼 �(𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀) > 0�  // PV partially satisfies loads; difference from grid 
      𝑃𝑃𝐺𝐺𝑔𝑔𝑔𝑔𝑙𝑙,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀  
 
 
// net metering; calculate power sent to loads from PV                      ( 9 ) 
𝐼𝐼𝐼𝐼 �(𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀) < 0�  // PV fully satisfies loads; PV = loads 

𝑃𝑃𝑃𝑃𝑃𝑃,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙   
𝐼𝐼𝐼𝐼 �(𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀) > 0�  // PV partially satisfies loads; all PV goes to loads 

𝑃𝑃𝑃𝑃𝑃𝑃,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀   

 PLoad is the power consumed by the loads, PPV is the power generated by the PV 

array, PGrid,Load is the power provided from the grid to the loads, PPV,Load is the power 

provided from the PV array to the loads and ε is the inverting efficiency. 
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Based on the total power calculated for each grid and PV supplied to the load, it is 

possible to calculate the energy in kWh for a 10-minutes timestamp by the following 

equation: 

 𝐸𝐸 = 𝑃𝑃
6∗1000

  ( 10) 

 The self-consumption factor (ξ) is taken from Castillos’ research (Castillo, 2011, p. 

2343) and for this particular system is defined by equation  11. 

 𝜉𝜉 = 𝐸𝐸𝑃𝑃𝑃𝑃,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

  ( 11) 

  Note that this definition of self-consumption does not value excess PV energy that 

would be exported to the grid. 

In order to visualize the behavior of the PV and grid when suppling the loads, Figures 

23 to 27 will show the charts with PLoad, PPV,Load and PGrid,Load for some sample days. In this 

analysis PGrid,Load satisfies any load not satisfied by PPV,Load.   
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Figure 23. Power delivered to loads with 3-hour load management – net metering - May 19th 

The net metering self-consumption factor for May 19th is 15.9% with an amount of 

1.23 sun hours. 
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Figure 24. Power delivered to loads with 3-hour load management – net metering - May 26th. 

The net metering self-consumption factor for May 26th is 38.9% with 3.95 sun hours. 
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Figure 25. Power delivered to loads with 3-hour load management – net metering - June 3rd. 

The net metering self-consumption factor for June 3rd is 43.3% with 6.26 sun hours. 

 In order to compare the effects of adding load management, it is important to analyze 

2 days with a comparable amount of irradiance. May 28th had 6.46 sun hours and there was 

no load management applied to the loads while June 3rd had a 3-hour load management 

applied to it. May 28th presented a self-consumption factor 39.8%. As can be seen, even with 

a smaller amount of irradiance, load management can considerably increase self-

consumption for a net metering system. The increase from one day to the other was about 

8%. With the same approach, June 8th was a sample day that had a 5-hour load management 

and an amount of 6.46 sun hours. The self-consumption was 49.3%, representing an increase 

in self-consumption of 24% compared to May 28th and 13% compared to June 3rd. The 
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behavior of the system for May 28th and June 8th can be seen in Figures 26 and 27, 

respectively. 

 
Figure 26. Power delivered to loads with no load management – net metering - May 28th. 
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Figure 27. Power delivered to loads with 5-hour load management– net metering - June 8th. 
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consumption system was measured as mentioned in the methodology.  

 A similar set of equations were used to calculate the power sent from the grid, PV and 
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programming language C to facilitate understanding the system’s behavior. The // are 

comments explaining each equation. The priority of power flow is for battery charges and 
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// self-consumption; calculate power sent to loads from the grid              (12) 
𝐼𝐼𝐼𝐼 �(𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀) < 0�                          // PV fully satisfies loads; no grid needed 

𝑃𝑃𝐺𝐺𝑔𝑔𝑔𝑔𝑙𝑙,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 = 0  
𝐸𝐸𝑔𝑔𝑔𝑔𝐸𝐸      

𝐼𝐼𝐼𝐼 �(𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝐵𝐵𝑙𝑙𝑏𝑏𝑏𝑏 ∗ 𝜀𝜀) < 0�            // batteries are charging; no excess PV 
𝑃𝑃𝐺𝐺𝑔𝑔𝑔𝑔𝑙𝑙,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 

      𝐸𝐸𝑔𝑔𝑔𝑔𝐸𝐸     // batteries discharging and partially satisfying loads; difference from grid 
            𝑃𝑃𝐺𝐺𝑔𝑔𝑔𝑔𝑙𝑙,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 − (𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑃𝑃𝐵𝐵𝑙𝑙𝑏𝑏𝑏𝑏) ∗ 𝜀𝜀 
 
// self-consumption; calculate power sent to loads from PV                (13) 
𝐼𝐼𝐼𝐼 (𝑃𝑃𝐵𝐵𝑙𝑙𝑏𝑏𝑏𝑏 ≥ 0)     // batteries are charging 

𝐼𝐼𝐼𝐼 �(𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀) < 0�   // PV fully satisfies loads; PV = loads 
            𝑃𝑃𝑃𝑃𝑃𝑃,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 
      𝐸𝐸𝑔𝑔𝑔𝑔𝐸𝐸  
       𝐼𝐼𝐼𝐼 �(𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑃𝑃𝐵𝐵𝑙𝑙𝑏𝑏𝑏𝑏) > 0�  // PV charging batteries; excess to loads 
                 𝑃𝑃𝑃𝑃𝑃𝑃,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 =  (𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑃𝑃𝐵𝐵𝑙𝑙𝑏𝑏𝑏𝑏) ∗ 𝜀𝜀 
           𝐸𝐸𝑔𝑔𝑔𝑔𝐸𝐸     // PV used to charge batteries; none sent to loads          
   𝑃𝑃𝑃𝑃𝑃𝑃,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 = 0  
𝐸𝐸𝑔𝑔𝑔𝑔𝐸𝐸       // batteries are discharging 

𝐼𝐼𝐼𝐼 �(𝑃𝑃𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 −  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀) > 0�   // PV partially satisfies loads; PV satisfies loads 
            𝑃𝑃𝑃𝑃𝑃𝑃,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝜀𝜀  
      𝐸𝐸𝑔𝑔𝑔𝑔𝐸𝐸      // PV and battery satisfy the loads 
            𝑃𝑃𝑃𝑃𝑃𝑃,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 = (𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑃𝑃𝐵𝐵𝑙𝑙𝑏𝑏𝑏𝑏) ∗ 𝜀𝜀  // (battery discharge is negative) 
 

// self-consumption; calculate power sent to loads from battery 
𝑃𝑃𝐵𝐵𝑙𝑙𝑏𝑏𝑏𝑏,𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑃𝑃𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏 ∗ 𝜀𝜀  // Battery discharge                ( 8) 
 
 PLoad is the power consumed by the loads, PPV is the power generated by the PV 

array, PBatt is either power for charging or discharging the batteries, PGrid,Load is the power 

provided from the grid to the loads, PPV,Load is the power provided from the PV array to the 

loads, PBatt,Load is the power from the batteries to the load and ε is the inverting efficiency. 

 In order to calculate the self-consumption factor for this particular system, the battery 

discharges are added to the equation 11, as it can be seen on equation 15. 

 𝜉𝜉 = 𝐸𝐸𝑃𝑃𝑃𝑃,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐸𝐸𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

  ( 9) 
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In order to visualize the behavior of the PV and grid when suppling the loads, Figures 

28 to 31 will show the charts with PLoad, PPV,Load, PBatt,Load and PGrid,Load for the sample days. 

 
Figure 28. Power delivered to loads with 2-hour load management - self-consumption - May 
19th.  

The system’s self-consumption factor for May 19th is 14.7% with an amount of 1.23 

sun hours. 
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Figure 29. Power delivered to loads with 3-hour load management- self-consumption - May 
26th.  

The system’s self-consumption factor for May 26th is 47.4% with an amount of 3.95 

sun hours. 
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Figure 30. Power delivered to loads with 3-hour load management - self-consumption - June 
3rd.  

The system’s self-consumption factor for June 3rd is 47.9% with an amount of 6.26 

sun hours. 

The same analysis done for the net metering system was made for the self-

consumption system. Three days with equivalent amount of sun hours but with different load 

profiles were compared. May 28th had no load management and presented a self-consumption 

factor of 43.4% with 6.46 sun hours while June 8th had a self-consumption factor of 53.3% 

with the same amount of sun hours as May 28th. Therefore, there was an improvement of 

10% from June 3rd to May 28th, 23% from June 8th to May 28th, and 11% from June 8th to 

June 3rd. Figures 31 and 32 show the system’s behavior for May 28th and June 8th, 

respectively. 
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Figure 31. Power delivered to loads with no load management - self-consumption - May 28th. 
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Figure 32. Power delivered to loads with 5-hour load management - self-consumption - June 
8th. 

 Table 5 contains a summary of the findings for the 23 sample days, listed from the 

lowest to the highest amount of sun hours. The table includes the self-consumption factor for 

a net metering and a self-consumption system, the total daily energy delivered from PV to 

loads (EPVsc,Load) for the self-consumption system, the total daily energy calculated 

(EPVnet,Load) for the net metering system, the total daily energy delivered from the batteries to 

the load (EBatt,Load) and the total daily energy consumed by the loads (ELoads).  
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Table 5. Summary of Findings 

Month Day Sun 
Hours 

Load Profile ξ Net 
Metering 

ξ Self 
Consumption 

EPVsc,Load 
(kWh) 

EPVnet,Load  
(kWh) 

EBatt 
(kWh) 

ELoad  
(kWh) 

May 20 0.98 with 3h LM 12.9% 11.5% 2.47 3.07 0.27 23.84 
April 30 1.92 without LM 19.5% 22.2% 3.81 4.65 1.47 23.81 
May 19 1.93 with 3h LM 15.9% 14.7% 3.34 3.79 0.16 23.80 
May 29 2.18 without LM 27.9% 30.4% 5.34 6.05 1.26 21.73 
June 5 3.09 with 3h LM 34.4% 39.4% 7.62 8.01 1.56 23.30 
June 2 3.43 without LM 31.0% 38.5% 5.95 7.27 3.1 23.46 
June 1 3.44 without LM 27.4% 39.4% 5.5 6.44 3.75 23.47 
May 31 3.88 without LM 31.2% 39.4% 6.04 7.2 3.03 23.03 
May 26 3.95 with 3h LM 38.9% 47.4% 7.86 8.84 2.91 22.74 
June 6 4.17 with 5h LM 46.5% 50.0% 9.61 10.9 2.11 23.43 
May 30 4.44 without LM 34.9% 41.9% 6.02 7.63 3.14 21.86 
June 4 4.71 with 3h LM 39.8% 47.1% 7.65 9.32 3.39 23.45 
May 25 5.28 with 3h LM 46.1% 51.4% 8.61 10.56 3.18 22.92 
May 27 5.48 with 3h LM 41.5% 49.0% 7.77 9.42 3.36 22.73 
June 10 6.1 with 5h LM 50.9% 52.8% 9.46 11.94 2.93 23.45 
June 7 6.2 with 5h LM 46.3% 50.3% 8.92 10.87 2.89 23.47 
June 3 6.26 with 3h LM 43.3% 47.9% 8.32 10.15 2.92 23.46 
April 29 6.27 without LM 36.8% 41.5% 6.77 8.77 3.12 23.83 
May 28 6.46 without LM 39.8% 43.4% 6.8 8.97 2.99 22.56 
June 8 6.46 with 5h LM 49.3% 53.3% 9.46 11.63 3.13 23.61 
June 11 6.65 with 5h LM 48.7% 49.7% 8.59 11.18 2.81 22.95 
May 24 6.77 with 3h LM 44.1% 48.2% 7.84 10.12 3.23 22.96 
June 9 6.92 with 5h LM 49.1% 52.4% 9.24 11.59 3.14 23.62 

 
Irradiance Analysis 

 By observing Table 5, it can be seen that there are some sample days that have the 

same system and similar amount of sun hours but with a significant difference in the self-

consumption factor. For instance, if you compare May 25th (5.28 sun hours) with May 27th 

(5.48 sun hours), it is possible to see that even though the 25th had a lower amount of sun 

hours, it presented a higher net metering self-consumption factor. The reason behind it is that 

there was a larger amount of irradiance for the hours with more power consumption on the 

25th than on the 27th. Figure 33 shows the irradiance profile for both days and, since both 
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load profiles were very similar, just the May 27th load profile was plotted on the chart. As it 

can be seen, from 8 to 11am, time of the day that there is a larger power consumption, the 

irradiance for May 25th is greater than on May 27th, meaning that more PV power was used to 

supply the loads. It gets a lot more evident when PGrid,Load are plotted on the same graph as it 

can be seen in Figure 34. It is clear that there was less power draw from the grid for May 25th 

than for May 27th. Another way to notice this difference based on the irradiance profile is to 

check the calculated EPV,Load. The highest self-consumption factor had the highest EPV,Load, 

10.56 kWh for May 25th and 9.42 kWh for May 27th. 

 The same observation can be seen on the self-consumption system. However, since 

the battery discharges are included on the calculation for the self-consumption factor, the 

final results might not be as different as it can be for the net metering system. 

 
Figure 33. Irradiance analysis for May 25th and 27th. 
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Figure 34. Irradiance analysis - Egrid,load - May 25th & 27th. 

Grid Export Analysis 

 So far, all the analysis developed were able to reflect only the amount of self-

consumption and, indirectly, grid imports for each system condition. However, it is important 

to analyze what is the behavior of power export to the grid. In order to do so, it is necessary 

to calculate the total amount of energy generated by the PV (EPV), the total amount of energy 

sent to the loads from PV for the net metering system (EPVnet,Load) and self-consumption 

system (EPVsc,Load), and the total amount of energy used to charge the battery bank with PV 

(EPV,Batt). Note that all those variables are calculated based on the PV power estimated by 

equation 7.  
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divided by the total amount of energy generated by the PV. In other words, for a net metering 

system, ι is: 

 𝜄𝜄 = 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 
𝐸𝐸𝑃𝑃𝑃𝑃

  (16) 

 For a self-consumption system, ι is: 

 𝜄𝜄 = 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿+𝐸𝐸𝑃𝑃𝑃𝑃,𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 
𝐸𝐸𝑃𝑃𝑃𝑃

  (17) 

 Table 6 contains a summary of all findings related to grid exports for all 23 sample 

days.  

Table 6. Summary of Grid Export Rate (ι) 

Mth Day Sun 
Hours Load Profile ι Net 

Metering 
ι Self-

Consumption Epvnet,load Epvsc,load 
(kWh) 

Epv,batt 
(kWh) 

Epv,total 
(kWh) 

May 20 0.98 with 3h LM 4.1% 3.4% 3.07 2.72 0.37 3.2 

April 30 1.92 without LM 22.5% 2.5% 4.65 4.11 1.74 6.0 

May 19 1.93 with 3h LM 5.3% 4.8% 3.79 3.51 0.3 4.0 

May 29 2.18 without LM 11.0% 2.9% 6.05 4.98 1.62 6.8 

June 5 3.09 with 3h LM 16.6% 3.8% 8.01 7.34 1.9 9.6 

June 2 3.43 without LM 31.4% 6.2% 7.27 6.29 3.65 10.6 

June 1 3.44 without LM 39.2% 7.5% 6.44 5.53 4.27 10.6 

May 31 3.88 without LM 40.0% 16.7% 7.2 6.38 3.62 12.0 

May 26 3.95 with 3h LM 27.5% 5.2% 8.84 8.07 3.49 12.2 

June 6 4.17 with 5h LM 15.5% 3.7% 10.9 9.67 2.75 12.9 

May 30 4.44 without LM 44.3% 24.7% 7.63 6.57 3.75 13.7 

June 4 4.71 with 3h LM 35.7% 15.7% 9.32 8.23 3.99 14.5 

May 25 5.28 with 3h LM 34.8% 18.0% 10.56 9.64 3.65 16.2 

May 27 5.48 with 3h LM 43.9% 28.5% 9.42 8.13 3.89 16.8 

June 10 6.1 with 5h LM 36.1% 24.2% 11.94 10.67 3.5 18.7 

June 7 6.2 with 5h LM 42.8% 30.3% 10.87 9.82 3.43 19.0 

June 3 6.26 with 3h LM 47.1% 35.7% 10.15 8.95 3.39 19.2 

April 29 6.27 without LM 54.3% 41.7% 8.77 7.55 3.64 19.2 

May 28 6.46 without LM 54.5% 42.4% 8.97 7.8 3.55 19.7 

June 8 6.46 with 5h LM 41.0% 29.1% 11.63 10.29 3.67 19.7 

June 11 6.65 with 5h LM 44.9% 35.3% 11.18 9.85 3.29 20.3 

May 24 6.77 with 3h LM 51.1% 38.1% 10.12 9.06 3.75 20.7 

June 9 6.92 with 5h LM 45.3% 34.4% 11.59 10.22 3.69 21.2 
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Based on the data presented on Table 6, it is possible to verify that, the increase in 

sun hours tend to increase the amount of energy exported to the grid for either type of 

system. It is simpler to check it for days with the same load profile. Also, regardless of the 

amount of sun hour or load profile, the self-consumption system will always export less 

energy than the net metering system, since the PV is also used to charge the battery bank. 

Adding load management helps decreasing the amount of grid exports. For instance, 

comparing May 28th with June 8th, both with 6.46 sun hours, June 8th presented a decrease of 

about 68% as it performed a 5-hour load management.  
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CHAPTER 5: CONCLUSIONS 

 
Effects of Sun Hours 

 For low levels of sun hours (less than 2 hours), it is not possible to predict any 

improvements in performance on a PV system when adding energy storage and load 

management. However, when the amount of sun hours is greater than 2 hours, it is possible 

to obtain a reduction in grid imports, meaning an increase in self-consumption. Figure 35 

shows the trend of increase in self-consumption based on sun hours for a load profile without 

load management. 

 
Figure 35. Average increase in ξ  without load management based in sun hours. 

 Although ξ increased when the amount of sun hours increase, the amount of energy 

exported to the grid also increase since the PV generation also increases. Figure 36 shows the 
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Figure 36. Average increase in ι without load management based in sun hours. 

Effects of Adding Battery Storage 

 Assuming that a PV system has the capability of exporting power to the grid, adding a 

battery storage to this system means that the total amount of PV exports will decrease as the 

battery bank needs a daily charge according to its usage. However, the difference between 

both systems decreases with the increase in sun hours. That is due to the system reaching 

saturation in self-consumption. When that happens, as the systems cannot no longer have a 

significant increase in self-consumption, they start exporting more energy to the grid.  Figure 

37 presents the trend for the difference in grid export between the net metering system and 

the self-consumption system. There is a small difference for the 3-hour load management 

system for 1 sun hour because the amount of PV used to charge the battery is too low, 

therefore, the amount of PV sent to the loads for both systems are very similar.  
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Figure 37. Average difference in ι between a net metering and a self-consumption system. 

With the battery bank charged, the energy stored can be used in a time where there is 

not enough PV generation to supply the load or when there is no generation at all, like during 

the night. Hence, battery discharges contribute to an increase in self-consumption when 

compared to a net metering system. However, as mention before, each system reaches a point 

that self-consumption can longer increase significantly, leading to a decrease in the average 

difference in self-consumption between both systems, as it shows in Figure 38. 
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Figure 38. Average difference in ξ  between a net metering and a self-consumption system. 

Effects of Adding Load Management 

 When comparing days with a similar amount of sun hours, it is possible to verify 

improvements from having a system with no load management load profile to a 3-hours or 5-

hours load management load profile since the loads that were supposed to be powered by the 

grid at night will be powered by the PV system when there is enough irradiance during the 

day. For instance, comparing May 28th (no load management) to May 24th (3 hours load 

management) there was an improvement in self-consumption of 11% for both net metering 

and self-consumption system. When compared to June 8th, there was an improvement of 

23%.   

 The same happens for the amount of grid exports. As the total self-consumption 

increases with the increase in sun hours, the energy export will decrease since there will be 

more loads available to be powered by the PV system.    
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Effects of Irradiance Profile 

 It is known that a total amount of sun hours can be the same for 2 different days. 

However, the irradiance profile can be completely different. It can be sunnier around noon 

for one day while the other is sunnier in the afternoon. With that said, the load profile will 

make a difference when calculating the self-consumption factor. If the PV generation is high 

when the loads consume more power, the amount of power sent to the loads will be greater 

than when there is a high amount of PV generation for a small load consumption. May 25th 

and 27th are a good example for that. The increase is greater for a net metering system since 

the battery is not part of the equation, meaning that it can have different amount of 

discharges, but an improvement in self-consumption can still be seem when energy storage is 

added to the system. 

 

Recommendations for Further Researches  

 This research was able to show methods that can optimize a self-consumption system. 

However, the performance might change for different load profiles and locations. With that 

said, creating a computer model that can reproduce the weather conditions, load profile, PV 

generation and battery charges/discharges, will help on sizing the PV array and the battery 

bank in order to reach higher levels of self-consumption. 

 Another topic that can be studied is the economic analysis for the system to verify the 

advantages that improving self-consumption can bring to the costumer. For the same study, 

the batteries can also be charged/discharged based on the energy ratings throughout the day. 

 As the irradiance profile affects the total self-consumption, a load management 

system can be developed to be dynamic by shifting loads based on the weather forecast. 
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APPENDIX A: SERVICES PROVIDE BY ENERGY STORAGE 

 
Table A. 1 ISO/RTO Services (Rocky Mountain Institute, 2015, p. 6) 

 
 
 

Table A. 2 Utility Services (Rocky Mountain Institute, 2015, p. 16) 
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Table A. 3 Customer Services (Rocky Mountain Institute, 2015, p. 16) 
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APPENDIX B: ARDUINO SKETCH – LOAD PROFILE 

 

#include <Wire.h> 

#include "RTClib.h" 

#include <SD.h> 

#include <Adafruit_ADS1015.h> 

 

// On the Ethernet Shield, CS is pin 4. Note that even if it's not 

// used as the CS pin, the hardware CS pin (10 on most Arduino boards, 

// 53 on the Mega) must be left as an output or the SD library 

// functions will not work. 

RTC_DS1307 rtc; 

int Load_1 = 2; 

int Load_2 = 3; 

int Load_3 = 4; 

int Load_4 = 5; 

int Load_5 = 6; 

int Load_6 = 7; 

 

float power_load_1; 

float power_load_2; 

float power_load_3; 

float power_load_4; 

float power_load_5; 
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float power_load_6; 

 

byte Loads[24][6]={ 

 {1,1,0,0,0,0}, 

 {0,1,1,1,0,0}, 

 {1,0,0,1,1,0}, 

 {0,1,0,0,0,1}, 

 {0,0,1,1,1,1}, 

 {0,1,0,0,1,0}, 

 {0,1,1,1,0,0}, 

 {1,1,0,0,0,0}, 

 {0,1,1,1,0,0}, 

 {1,0,0,1,1,0}, 

 {0,1,0,0,0,1}, 

 {0,0,1,1,1,1}, 

 {0,1,0,0,1,0}, 

 {0,1,1,1,0,0}, 

 {1,1,0,0,0,0}, 

 {0,1,1,1,0,0}, 

 {1,0,0,1,1,0}, 

 {0,1,0,0,0,1}, 

 {0,0,1,1,1,1}, 

 {0,1,0,0,1,0}, 
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 {0,1,1,1,0,0}, 

 {1,1,0,0,0,0}, 

 {0,1,1,1,0,0}, 

 {1,0,0,1,1,0} 

}; 

 

void setup () { 

   

  pinMode(Load_1, OUTPUT); 

  pinMode(Load_2, OUTPUT); 

  pinMode(Load_3, OUTPUT); 

  pinMode(Load_4, OUTPUT); 

  pinMode(Load_5, OUTPUT); 

  pinMode(Load_6, OUTPUT); 

   

  Serial.begin(9600); 

 

  rtc.begin(); 

  if (! rtc.isrunning()) { 

    Serial.println("RTC is NOT running!"); 

    // following line sets the RTC to the date & time this sketch was compiled 

    rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); 

    // This line sets the RTC with an explicit date & time, for example to set 
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    // January 21, 2014 at 3am you would call: 

    // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); 

  } 

  

  // see if the card is present and can be initialized: 

  if (!SD.begin(chipSelect)) { 

    Serial.println("Card failed, or not present"); 

    // don't do anything more: 

    return; 

  } 

  Serial.println("card initialized."); 

//*************************************************************** 

} 

void loop () { 

     DateTime now = rtc.now(); 

     digitalWrite(Load_1, Loads[now.hour()][0]); 

     digitalWrite(Load_2, Loads[now.hour()][1]); 

     digitalWrite(Load_3, Loads[now.hour()][2]); 

     digitalWrite(Load_4, Loads[now.hour()][3]); 

     digitalWrite(Load_5, Loads[now.hour()][4]); 

     digitalWrite(Load_6, Loads[now.hour()][5]); 

} 
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APPENDIX C: INVERTER CONFIGURATION 

 
 

App State Univ 
Settings     
Configuration is AC-coupled 
system.     
      

Schneider 
Inverter Settings 

    

      
Setting Name Setting Comments 
Type XW5548+ Not an actual setting. Information provided 

for reference only. Record model #, serial # 
and firware revision, available under 
System Settings -> View Device Info 
Example:  
Model #: 865-5548-01 
Serial #: 000018465944 
F/W Rev.: 2.01.00 BN21 

Inverter Enabled   
Search Mode Disabled   
Grid Support  Enabled   
Charger Enabled   
Mode Standby NOTE: Make changes to settings while in 

Standby Mode. Return to Operating Mode 
once complete. 

      
Inverter Settings     
LBCO 44V Represents 3.14V/cell. 
LBCO Hyst 1V   
LBCO Delay 10 sec   
HBCO 58.8V Represents 4.20V/cell. Maximum 

recommended battery voltage from 
Samsung for charge. 

HBCO Hyst 2V This setting is not configurable with the 
Connext SCP programming tool. This is the 
default setting. NOT SHOWN. 

Search Watts 50W Search mode not enabled. Setting provided 
for reference only. 

Search Delay 2 sec Search mode not enabled. Setting provided 
for reference only. 
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Charger Settings     
Battery Type Custom   
Custom Settings     
Equalize Voltage 57.4V Represents 4.10V/cell (90% SoC per 

Samsung for 18650-22P cell). 
NOTE: Equalize voltage is not used for LiIon 
battery pack and is not used when Equalize 
Support is disabled on the XW+ inverter, but 
it should be set in case the Equalize mode is 
inadvertantly enabled. SET THIS  FIRST. 

Equalize Support Disabled   

Bulk Voltage 57.4V Represents 4.10V/cell. 
Absorb Voltage 57.4V Represents 4.10V/cell. 
Float Voltage 57.4V Represents 4.10V/cell. 

NOTE: Float voltage is not used in 2 Stage, 
No Float charging mode, but Float Voltage 
should be set in case charge mode is 
inadvertantly changed to a mode which 
includes the float stage. 

Batt Temp Comp -108mV/C   
Batt Capacity 172Ah   
Max Charge Rate 39% Percentage is of Continuous Current Rating 

of inverter (140A on XW6448, 110A on 
XW5548). 39% on XW5548 yields 42.9A 
(which is approximately 1/4C for four 
14S20P Nexcon battery packs: (2150mA / 4) 
x 20 x 4 = 43,000mA = 43A). NOTE: this 
setting is NOT tied to the Max Bulk Current 
setting. 

Charge Cycle 2StgNoFloat Two stage, no float charge type. 
Default Battery Temp Warm   
Recharge Voltage 51.3V Represents 3.66V/cell. No charge occurs 

above this setting from the grid, but 
charging from the PV system is not affected 
by this setting. Voltage must drop to this 
level before charging from AC1 (IN) will 
start. 
NOTE: In an AC-coupled system, the solar 
inverter output is tied to AC-LOAD, not AC1 
(IN). 
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Absorption Time 60 min   
Charge Block Start 6:00PM Charge Block Start and Stop may be 

customer/region specific settings and 
subject to change based on local 
regulations. 

Charge Block Stop 8:00am   
      

   
AC Settings     
AC Priority AC1   
AC1 Breaker Rating 60A This setting is tied directly to the breaker 

used in the inverter and MUST be changed 
if the physical breaker is changed to a 
lower/higher value. 

AC1 Min Volt 106V   
AC1 Max Volt 132V   

AC1 Min Freq 55Hz   
AC1 Max Freq 65Hz   
AC2 Breaker Rating 60A NOTE(S):  

Typically no generator is attached to AC2 - 
review settings if installation includes a 
generator. 
This setting is tied directly to the breaker 
used in the inverter and MUST be changed 
if the physical breaker is changed to a 
lower/higher value. 

AC2 Min Volt 80V NOTE: Typically no generator is attached to 
AC2 - review settings if installation includes 
a generator. 

AC2 Max Volt 138V NOTE: Typically no generator is attached to 
AC2 - review settings if installation includes 
a generator. 

AC2 Min Freq 55Hz NOTE: Typically no generator is attached to 
AC2 - review settings if installation includes 
a generator. 

AC2 Max Freq 65Hz NOTE: Typically no generator is attached to 
AC2 - review settings if installation includes 
a generator. 
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Grid Support Settings     

Grid Support Voltage 51.3V Represents 3.6V/cell. Grid Support is the 
level to which the batteries will discharge 
to sell to the grid. Ideally this setting should 
be at or below the Recharge Voltage setting 
if the system is expected to charge cycle 
based on grid discharge. 

Sell Disabled This setting is dependent on customer 
preference and/or local/regional regulatory 
requirements. 

Max Sell Amps 5.0A Typically this setting is set based on 
maximum available PV output. Unless 
Enhanced Grid Support is enabled, inverter 
will try to meet the Max Sell Amps setting 
by making up any shortfall from battery 
storage.  
NOTE: Max Sell Amps is an AC setting (per 
AC line), not a DC setting. For example: if 
Vbat = 55V and Max Sell Amps = 5A (per AC 
leg, at two legs = 10A total), then (AC) 10A 
x 120V = 1200VA; thus (DC) 1200VA / 55V = 
~21.8A (drawn from DC/battery). 

Load Shave Disabled   

Load Shave Amps 48.0A Load Shave disabled. Setting provided for 
reference only. 

Load Shave Start 12:00AM Load Shave disabled. Setting provided for 
reference only. 

Load Shave Stop 12:00AM Load Shave disabled. Setting provided for 
reference only. 

Sell Block Start 11:00PM   
Sell Block Stop 6:00PM   
      
Generator Settings     
Gen Supp Mode Disabled   
Gen Supp Amps 48.0A NOTE: This setting will be set based on the 

support generator if implemented. Typical 
installations have not included generator 
support. 
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Aux Settings     

Manual Aux ManualOff NOTE: Future JuiceBox control firmware 
may toggle this under its control to 
manually control a relay to control the 
output from an AC-coupled solar inverter. 

Active Level ActiveHigh   
      

Advanced Features     
RPO Disabled NOTE: Future JuiceBox control firmware 

may toggle this under its control to 
manually control Remote Power Output. 

Power Save Disabled   
Sell Delay 40s Disabled   

Gen Support Plus Disabled   
AC_Coupling Enabled   
Batt_Balance Disabled   
Peak Load Shave Delay 2 
Hours 

Disabled NOTE: Enabling this setting will allow the 
MPPT solar charge controller (in DC-
coupled systems) to charge the batteries 
first, then (after two hours expires), Peak 
Load Shave mode (if enabled) would be 
entered for AC Load Support. 

      
Miscellaneous (not settable 
with SCP) 

    

Max Bulk Current  80.0A   
Discharge Imax 150% There is a mismatch between CommBox 

and SCP. One shows as Amps (CommBox) 
the other as percent (SCP). Changing the 
parameter on either side shows the SAME 
value (in native unit) on the other device 
when read. For example setting 60A will 
read as 60%, setting 140% will read as 
140Amps. 

Discharge Time 10 sec   
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